
 

 

 LBNL-42261 
 revised 

 
 
 

Parallelization of iTOUGH2 
Using PVM 

 
 
 
 

Stefan Finsterle 
 

Earth Sciences Division 
Lawrence Berkeley National Laboratory 

University of California 
Berkeley, CA 94720 

 
 

October 1998 
 
 
 
 
 
 
 
 
 
 

This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of 
Geothermal Technologies, of the U.S. Department of Energy, under Contract No. DE-AC03-76SF00098. 



 

 

 
 
 
 
 

DISCLAIMER 
 
 

This document was prepared as an account of work sponsored by 
the United States Government. While this document is believed 
to contain correct information, neither the United States 
Government nor any agency thereof, nor The Regents of the 
University of California, nor any of their employees, makes any 
warranty, express or implied, or assumes any legal responsibility 
for the accuracy, completeness, or usefulness of any information, 
apparatus, product, or process disclosed, or represents that its use 
would not infringe privately owned rights. Reference herein to 
any specific commercial product, process, or service by its trade 
name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States Government 
or any agency thereof, or The Regents of the University of 
California. The views and opinions of authors expressed herein 
do not necessarily state or reflect those of the United States 
Government or any agency thereof, or The Regents of the 
University of California. 

 
 

Ernest Orlando Lawrence Berkeley National Laboratory 
is an equal opportunity employer. 

 



 

_________________________________________________________________________ 
iTOUGH2-PVM i ABSTRACT 
 

ABSTRACT 
 
 iTOUGH2 inversions are computationally intensive because the forward problem must 
be solved many times to evaluate the objective function for different parameter 
combinations or to numerically calculate sensitivity coefficients.  Most of these forward 
runs are independent from each other and can therefore be performed in parallel.  Message 
passing based on the Parallel Virtual Machine (PVM) system has been implemented into 
iTOUGH2 to enable parallel processing of iTOUGH2 jobs on a heterogeneous network of 
Unix workstations.  This report describes the PVM system and its implementation into 
iTOUGH2.  Instructions are given for installing PVM, compiling iTOUGH2-PVM for use on 
a workstation cluster, the preparation of an iTOUGH2 input file under PVM, and the 
execution of an iTOUGH2-PVM application.  Examples are discussed, demonstrating the 
use of iTOUGH2-PVM. 
 



 

_________________________________________________________________________ 
iTOUGH2-PVM ii TABLE OF CONTENTS 
 

TABLE OF CONTENTS 
 
 
1. INTRODUCTION........................................... 1 
 
2. iTOUGH2-PVM PARALLELIZATION CONCEPTS .................... 2 
 2.1 General Remarks........................................ 2 
 2.2 Parallelization of the Levenberg-Marquardt Algorithm................ 3 
 2.3 Parallelization of the Gauss-Newton Algorithm.................... 4 
 2.4 Parallelization of the Simplex Algorithm......................... 4 
 2.5 Parallelization of Grid Search................................ 4 
 2.6 Parallelization of First-Order-Second-Moment and Sensitivity Analyses.... 5 
 2.7 Parallelization of Monte Carlo Simulations........................ 5 
 2.8 Summary.............................................. 6 
 
3. INSTALLATION............................................ 7 
 3.1 Introduction............................................ 7 
 3.2 Installing PVM.......................................... 7 
 3.3 Installing iTOUGH2-PVM .................................. 8 
 
4. USING iTOUGH2-PVM ....................................... 9 
 4.1 iTOUGH2-PVM Command >>> PVM ......................... 9 
 4.2 Running iTOUGH2-PVM .................................. 10 
 
5. EXAMPLES............................................... 11 
 5.1 Overview.............................................. 11 
 5.2 Example 1: Parameter Estimation............................. 12 
 5.3 Example 2: Grid Search.................................... 16 
 5.4 Example 2: Monte Carlo Simulations........................... 21 
 
6. TROUBLESHOOTING........................................ 23 
 
ACKNOWLEDGMENT.......................................... 26 
 
REFERENCES................................................ 26 
 
APPENDIX A: SHELL SCRIPT itough2............................ 27 
 
APPENDIX B: iTOUGH2-PVM ARCHITECTURE ....................... 31 
 
 



 

_________________________________________________________________________ 
iTOUGH2-PVM iii LIST OF FIGURES/TABLES 
 

LIST OF FIGURES 
 
Figure 5.2.1. Excerpt from modified iTOUGH2 input file sam2p3i. ......... 12 
Figure 5.2.2. Screen dump of messages from iTOUGH2-PVM. .............. 12 
Figure 5.2.3. Excerpt from iTOUGH2 output file sam2p3i.out;  
 spawning of child processes............................. 13 
Figure 5.2.4. Excerpt from iTOUGH2 output file sam2p3i.out; summary. .... 13 
Figure 5.2.5. Excerpt from modified iTOUGH2 input file sam2p3i; two hosts.... 14 
Figure 5.2.6. Excerpt from iTOUGH2 output file sam2p3i.out, showing  
 information about first Levenberg-Marquardt step............... 14 
Figure 5.2.7. Excerpt from iTOUGH2 message file sam2p3i.msg, showing  
 information about data exchange between processes............. 15 
Figure 5.3.1. Excerpt from modified iTOUGH2 input file sam2p2i........... 16 
Figure 5.3.2. Excerpt from iTOUGH2 output file sam2p2i.out, showing sorted  
 grid search output and load balance. ...................... 18 
Figure 5.3.3. Excerpt from modified iTOUGH2 input file sam2p2i, showing  
 multiple processes being spawned on the same host. ............ 19 
Figure 5.3.4. Excerpt from iTOUGH2 output file sam2p2i.out, showing  
 number of TOUGH2 runs performed by each process............ 19 
Figure 5.3.5. Excerpt from modified iTOUGH2 input file sam2p2i; unsorted  
 grid search......................................... 20 
Figure 5.3.6. Excerpt from iTOUGH2 output file sam2p2i.out, showing  
 unsorted grid search output and load balance.................. 20 
Figure 5.4.1. Excerpt from modified iTOUGH2 input file sam1p6i........... 21 
Figure 5.4.2. Excerpt from iTOUGH2 output file sam1p6i.out,  
 showing load balance. ................................ 22 
Figure 6.1. Potential iTOUGH2-PVM error messages. ................... 24 
Figure 6.2. Unsuccessful spawning of iTOUGH2-PVM tasks. .............. 24 
Figure A.1. Excerpt from shell script file itough2..................... 27 
Figure B.1. Simplified iTOUGH2-PVM flow chart. ..................... 32 
 
 
 
LIST OF TABLES 
 
Table 2.8.1. Summary of Parallelization Concepts....................... 6 
Table 5.1.1. Computer Architectures in the Workstation Cluster.............. 11 



 

_________________________________________________________________________ 
iTOUGH2-PVM 1 INTRODUCTION 
 

1. INTRODUCTION 
 
 Message passing based on the Parallel Virtual Machine (PVM) system has been 
implemented into iTOUGH2 to enable parallel processing of iTOUGH2 jobs on a 
heterogeneous network of Unix workstations.  iTOUGH2 is a program for parameter 
estimation, sensitivity analysis, and uncertainty propagation analysis [Finsterle, 1999a,b,c].  
iTOUGH2 is based on the TOUGH2 simulator for nonisothermal multiphase flow in porous 
and fractured media [Pruess, 1987, 1991].  PVM [Geist et al., 1994] is a freely available 
software library that enables a collection of heterogeneous computers to be used as a 
concurrent computational resource. 
 
 iTOUGH2 inversions are computationally intensive because the forward problem—the 
prediction of state variables using the TOUGH2 simulator—must be solved many times to 
evaluate the objective function for different parameter combinations or to numerically 
calculate sensitivity coefficients.  Most of these forward runs are independent from each 
other and can therefore be performed in parallel.  iTOUGH2-PVM is based on the parent-
child model, in which the parent process initializes the problem, and disseminates specific 
information—the individual parameter vectors—to a number of child processes.  The child 
processes then perform one full TOUGH2 simulation, returning the results—the elements 
of the residual vector—back to the parent task for further processing.  This type of 
parallelization on a high level without interaction among the child processes is termed 
“embarrassingly parallel” [Geist et al., 1994], and has been implemented into iTOUGH2 for 
improving the efficiency of inversions using the Levenberg-Marquardt, Gauss-Newton, 
Downhill Simplex, and Grid Search minimization algorithms.  Furthermore, the calculation 
of the coefficients for sensitivity analyses, as well as uncertainty propagation analyses 
using first-order-second-moment (FOSM) and Monte Carlo simulations, have been 
parallelized.  Minimization based on the method of Simulated Annealing is not parallelized. 
 
 This report describes the PVM system and its implementation into iTOUGH2.  
Instructions are given for installing PVM, compiling iTOUGH2-PVM for use on a 
workstation cluster, the preparation of an iTOUGH2 input file under PVM, and the 
execution of an iTOUGH2-PVM application.  Examples are discussed, demonstrating the 
use of iTOUGH2-PVM. 
 
 Running an iTOUGH2 job in parallel requires the following steps: 
 
• Installation of PVM on all the potential host machines; 
• Compilation of iTOUGH2-PVM and linking to PVM library routines; 
• Providing a list of PVM hosts in the iTOUGH2 input file (command >>> PVM); 
• Running iTOUGH2-PVM using the shell script itough2 with argument -pvm. 
 
 We will describe these steps in detail, after discussing the concept of parallelization for 
each of the iTOUGH2 applications outlined above.  



 

_________________________________________________________________________ 
iTOUGH2-PVM 2 CONCEPT 
 

2. iTOUGH2-PVM PARALLELIZATION CONCEPTS 
 
2.1 General Remarks 
 
 The main task of iTOUGH2 is to initiate multiple TOUGH2 simulations with different 
parameter sets, and to analyze each of the corresponding model outputs at selected 
calibration points.  A new, improved parameter set is then proposed following a certain 
strategy, which is specific to the chosen minimization method.  Some of these forward runs 
are independent from one another, which makes it possible to run them in parallel on 
separate processors.  Since obtaining the forward solutions consumes the bulk of the CPU 
time used in an iTOUGH2 inversion, with only a few percent of the time spent in the 
optimization routines, processing individual TOUGH2 runs in parallel has the potential of 
significantly reducing the turn-around time of an iTOUGH2 inversion. 
 
 The degree to which an iTOUGH2 job can be parallelized, and the maximum attainable 
efficiency depends on the minimization algorithm chosen, the number of parameters to be 
estimated, and the number of processors available for parallelization.  Since PVM enables 
distributed computing on a heterogeneous network of Unix workstations, the relative speed 
of the machines in the cluster also affects the efficiency.  Again, depending on the method 
used and the number of processors available, a machine with a slow response time may be 
the limiting factor, severely hampering the overall performance, or it may merely lead to a 
slightly suboptimal execution of the job without greatly affecting the efficiency.  Note that 
the response time of a particular machine in the cluster does not solely depend on the speed 
of its CPU, but also on the machine’s workload and the parameter set it happens to receive 
from the parent process. 
 
 Also depending on the iTOUGH2 application, there is a maximum number of processes, 
mprocs , one can reasonably run in parallel.  This number is usually identical to the number of 
parameters to be estimated, n .  The actual number of processors available for parallel 
computing is denoted by nprocs .  Even if there are more parameters to be estimated than 
processors available, it may not necessarily be advantageous to engage all available 
processors, i.e., fewer processors may lead to an equivalent performance because the extra 
processors would be idle, waiting for another processor to finish its task.  Finally, a 
significantly slower processor in a network has a relatively small impact on the overall 
performance if the number of processors available is small compared with the maximum 
number of processors one could potentially use. 
 
 While these rules are only approximate and usually difficult to apply because of the 
unknown workload on a given machine, it is nevertheless necessary for the user to 
understand which tasks are parallelized in a given iTOUGH2-PVM application.  This will be 
discussed in the following sections. 
 



 

_________________________________________________________________________ 
iTOUGH2-PVM 3 CONCEPT 
 

2.2 Parallelization of the Levenberg-Marquardt Algorithm  
 
 The Levenberg-Marquardt minimization algorithm is a gradient-based method that 
requires evaluating sensitivity coefficients with respect to each parameter to be estimated.  
In iTOUGH2, the sensitivity coefficients are calculated using the following forward finite 
difference quotient: 
 

 
j

ijji

j

i
ij p

zppz
p
z

J
δ
δ

∂
∂ )();( pp −+

≈=  (2.2.1) 

 
Here, iz  is the calculated system response at calibration point i , mi ,,1 K= , and p  is the 
parameter vector of length n .  The evaluation of the Jacobian J  thus requires 1+n  
TOUGH2 simulations: one run is used to obtain the elements )(piz , followed by n  
additional runs, each providing one column of the Jacobian matrix.  In each run, one of the 
parameters is perturbed by a small amount jpδ .  These n  runs with the perturbed 
parameter sets are independent and are thus parallelized in iTOUGH2-PVM.  The maximum 
number of processors to participate in this calculation is therefore n .  The initial forward 
run is not performed in parallel. 
 
 Once the Jacobian is evaluated, the Levenberg-Marquardt algorithm proposes an update 
vector p∆ , which depends on the Levenberg parameter λ  as follows: 
 

  ( ) rCJDJCJp 111 −−− +=∆ zz
T

zz
T λ  (2.2.2) 

 
Here, D  is an nn×  diagonal matrix with elements ( )iizz

T
iiD JCJ 1−= .  In the original 

iTOUGH2 implementation, if the step p∆  is successful (i.e., the objective function is 
reduced), the Levenberg parameter λ  is reduced by the Marquardt parameter ν , and a new 
Jacobian matrix (2.2.1) is evaluated; if the step is not successful (i.e., led to an increase in 
the objective function), λ  is increased by ν , and a new parameter vector ppp ∆+=+ )()1( kk  
is calculated using (2.2.2), until a successful step is obtained.  Instead of evaluating the 
objective function in sequence with either increasing or decreasing λ  values, a set of procsn  
forward runs are initiated simultaneously with various λ  values, and the simulation 
yielding the lowest objective function is identified.  If this run constitutes a successful step, 
optimization continues; if it is an unsuccessful step, another procsn  runs are performed with 

i
i νλλ ⋅= 0 , procsni ,,1 K= , where 0λ  is the Levenberg parameter that yielded the lowest 

value of the objective function in the previous set of runs.  The process is repeated until a 
successful step can be taken or one of the convergence criteria is met. 
 
 As discussed above, the Levenberg-Marquardt minimization algorithm runs in parallel 
for two separate calculations, (1) the evaluation of the Jacobian matrix, and (2) for trying 
parameter steps with different Levenberg parameters.  The latter is equivalent to 
performing a limited search for the minimum along the line of endpoints of possible 



 

_________________________________________________________________________ 
iTOUGH2-PVM 4 CONCEPT 
 

Levenberg-Marquardt steps with various values for λ  (see Eq. 2.2.2) at each iteration.  
This may further improve the performance of the algorithm.  However, it changes the 
solution path compared with that taken by standard, non-parallelized iTOUGH2.  
Parallelization can be restricted to the evaluation of the Jacobian matrix by using keyword 
JACOBIAN on the command line (see Section 4.1), leading to results which are consistent 
with the standard iTOUGH2 solution. 
 
 The parallel evaluation of the Jacobian has to be completed first, before multiple step 
vectors can be tested.  This means that some processors may be idle until all columns of the 
Jacobian are evaluated.  In other words, the number of processors procsn  should be selected 
such that all processors are busy.  For example, if 8== nmprocs  and 7 processors of 
equivalent speed and work load are available, only 4=procsn  should be selected to avoid 6 
processors being idle for 50% of the time during the calculation of the Jacobian. 
 
 
2.3 Parallelization of the Gauss-Newton Algorithm  
 
 Parallelization of the Gauss-Newton minimization algorithm is similar to that of the 
Levenberg-Marquardt method described in the previous section.  The only difference is that 
no test runs with varying Levenberg parameters are performed, i.e., only the evaluation of 
the Jacobian matrix using forward finite differences needs to be parallelized.  
(Parallelization of centered finite differences available in standard iTOUGH2 requires 
storing additional, large arrays, and is therefore not supported by iTOUGH2-PVM.) 
 
 
2.4 Parallelization of the Simplex Algorithm  
 
 Only certain calculations performed by the simplex algorithm are suitable for 
parallelization.  They include the evaluation of n  vertices of the initial simplex, the 1+n   
simulations performed during overall contraction, and the final calculation of the sensitivity 
matrix for the error analysis.  The initial run as well as function evaluations performed 
during reflection, expansion, and one-dimensional contraction of the simplex are not 
parallelized, limiting the overall increase in efficiency attainable. 
 
 
2.5 Parallelization of Grid Search 
 
 The evaluation of the objective function on a large number of points in the parameter 
space is well suited for parallelization.  In iTOUGH2, the output of the grid search method is 
a sorted list of parameter sets and the corresponding value of the objective function.  The 
sorting requires that results from parallel TOUGH2 simulations are only accepted in the 
exact same order as they have been submitted.  This may affect the efficiency if one of the 
processors is slower than the others.  However, sorting of the iTOUGH2 grid search output 
could also be done in a post-processing step, in which case a new parameter set is 
submitted for evaluation as soon as a processor becomes available, increasing efficiency. 



 

_________________________________________________________________________ 
iTOUGH2-PVM 5 CONCEPT 
 

 
 By default, the iTOUGH2 output will be sorted.  To allow unsorted output with higher 
efficiency, keyword UNSORTED must be added to the >>> GRID SEARCH command 
line  
 
 
2.6 Parallelization of First-Order-Second-Moment and Sensitivity Analyses 
 
 First-order-second-moment (FOSM) uncertainty propagation analyses and simple 
sensitivity analyses require a single evaluation of the Jacobian matrix (see Equation 2.2.1) 
using forward finite differences. (Centered finite differences available in standard iTOUGH2 
are not supported by iTOUGH2-PVM.)  Similar to the parallelization of the first step in the 
Levenberg-Marquardt algorithm (see Section 2.2), the initial run is performed on the parent 
processor.  The parent processor then broadcasts the result of the base-case run to all 
available child processors, and up to n  additional TOUGH2 runs are performed in parallel, 
each supplying one column of the Jacobian matrix. 
 
 
2.7 Parallelization of Monte Carlo Simulations  
 
 A large number of Monte Carlo simulations with randomly generated parameter sets 
can be run in parallel.  The parent process performs the first run, broadcasts the results of 
the base-case run to all child processors, and initiates new runs with random parameter sets 
whenever one of the child processors has finished its task.  The number of usable 
processors is only limited by the total number of Monte Carlo simulations required, making 
this type of uncertainty propagation analysis most suitable for parallelization. 
 



 

_________________________________________________________________________ 
iTOUGH2-PVM 6 CONCEPT 
 

2.8 Summary 
 
 Table 2.8.1 provides a quick reference to help a user understand the aspects of a 
calculation that are being parallelized, to select the number of processors to be added to the 
cluster, and to estimate the expected efficiency. 
 
 
 
Table 2.8.1.  Summary of Parallelization Concepts 

Method Calculation 
Parallelized 

Calculation Not 
Parallelized 

Comment 

Levenberg-Marquardt Jacobian 
Testing steps with 
 different λ s 

First run 
 

Centered finite differences 
not supported. 

nmprocs =  

Gauss-Newton Jacobian First run Centered finite differences 
not supported. 

nmprocs =  

Simplex Algorithm Initial simplex 
Overall contraction 
Final Jacobian 

First run 
Reflection 
Expansion 
1D-contraction 

nmprocs =  

Grid Search All runs - Use keyword UNSORTED 
for higher efficiency. 

runsprocs nm =  

Sensitivity Analyses Jacobian First run Centered finite differences 
not supported. 

nmprocs =  

First-Order-Second-
Moment uncertainty 
propagation analysis 

Jacobian First run Centered finite differences 
not supported. 

nmprocs =  

Monte Carlo  All runs but first First run MCprocs nm =  



 

_________________________________________________________________________ 
iTOUGH2-PVM 7 INSTALLATION 
 

3. INSTALLATION 
 
3.1 Introduction 
 
 PVM must be installed on all machines of the workstation cluster, and an iTOUGH2-
PVM executable must be built on each machine, properly linked to the routines of the PVM 
library.  PVM may already be available on a machine (type printenv PVM_ROOT to 
locate PVM), or must be installed according to the instructions given in Section 3.2.  
iTOUGH2-PVM must be compiled and linked using command make pvm on any 
machine, following the instructions given in Section 3.3.  If the code is redimensioned or 
changed, it must be recompiled on all machines. 
 
3.2 Installing PVM 
 
 This section gives short instructions for obtaining and installing PVM on a Unix work-
station.  For details, the reader is referred to Geist et al. [1994]. 
 
 PVM can currently be obtained by anonymous ftp to netlib2.cs.utk.edu.  File 
index in directory pvm3 describes the files that can be downloaded.  The PVM soft-
ware can also be requested by sending e-mail to netlib@ornl.gov with the message: 
send index from pvm3. 
 
 After the PVM distribution is unpacked according to the instructions in file index, a 
directory called pvm3 is created, preferably in the $HOME directory.  Two environment 
variables must be defined, most conveniently in the .cshrc file (assuming the C-Shell is 
used).  The first variable is PVM_ROOT, which is set to the location of the installed pvm3 
directory, for example: 
 
setenv PVM_ROOT $HOME/pvm3 
 
 The second variable is PVM_ARCH, which tells PVM the architecture of the host.  
Valid PVM_ARCH names are given in Table 5.1.1 on page 11 and Table 3.1 of Geist et al. 
[1994], or can be automatically determined by appending the contents of file 
$PVM_ROOT/lib/ cshrc.stub to file .cshrc.  The stub must be placed after 
variables PATH and PVM_ROOT are defined.  Type source .cshrc to invoke the 
changes. 
 
 PVM is automatically built by going to directory $PVM_ROOT and typing make.  
The makefile will compile and build pvm, pvmd3, libpvm3.a, libfpvm3.a, and 
libgpvm3.a, and place them in a subdirectory $PVM_ROOT/lib/$PVM_ARCH. 
 
 Next, all the hosts one wishes to use must be listed in file $HOME/.rhosts.  
Furthermore, a host file $HOME/.xpvm_hosts should be created, listing all the hosts, 
prepended by an “&”.  Login name and password are expected to be identical on all hosts.  
Otherwise, additional host file options must be given as described in Section 3.8 of Geist et 
al. [1994]. 



 

_________________________________________________________________________ 
iTOUGH2-PVM 8 INSTALLATION 
 

 PVM is started by typing pvm, which should give back a PVM console prompt pvm>.  
Alternatively, type pvmd & to start the pvmd3 daemon.  The virtual machine could be 
configured from the console.  However, iTOUGH2-PVM will automatically add the hosts 
defined in the iTOUGH2 input file (see Section 4.1), so the PVM console can be exited 
immediately by typing quit, leaving daemons and PVM jobs  running.  In order to shut 
down PVM, type pvm again followed by halt.  Note that PVM needs only be started 
on the machine where the parent process of iTOUGH2 will be executed.  PVM must not be 
running on the other hosts, i.e., no file /tmp/pvmd.<uid> should exist on these hosts. 
 
 PVM error messages are printed to the screen and to the log file 
/tmp/pvml.<uid>.  Check Section 6 and Section 3.5 of Geist et al. [1994] for trouble-
shooting of common startup problems. 
 
3.3 Installing iTOUGH2-PVM 
 
 File pvm.f contains the subroutines that link the iTOUGH2 application to the PVM 
library.  To run iTOUGH2-PVM on a single workstation, where PVM is not available or not 
needed, file pvmdummy.f must be used instead of pvm.f; it provides dummy subrou-
tines to satisfy all external references.   
 
 The iTOUGH2-PVM executable must be built in directory $HOME/itough2 by typ-
ing make pvm.  The target “pvm” makes sure that file pvm.o is added to the list of 
files to be compiled (see variable OBJPVM in file Makefile for the complete list of 
object files; customize it if necessary, e.g., add specific modules such as t2voc.o or 
ifs.o).  Furthermore, the path to the PVM include files and PVM libraries are provided.  
The two environment variables PVM_ROOT and PVM_ARCH discussed in Section 3.2 
are used to specify the directories that contain the PVM include files and the PVM libraries, 
respectively, using the -I and -L options (see variables CPVM and LPVM in file 
Makefile): 
 
-I$(PVM_ROOT)/include 
-L$(PVM_ROOT)/lib/$(PVM_ARCH) 
 
 Since FORTRAN interfaces to PVM are implemented as library stubs that in turn in-
voke the corresponding C routines, iTOUGH2-PVM must be linked to two archival libraries, 
namely the FORTRAN stubs library libfpvm.a as well as the C library libpvm3.a.  
Additional libraries may be required depending on the machine’s architecture.  The librar-
ies are linked using the -l option.  For example, a multiprocessor Sun SPARC station 
(PVM_ARCH=SUNMP), which uses shared memory, needs the following libraries: 
 
-lfpvm3 -lpvm3 -lnsl -lsocket -lthread 
 
 Most architectures require only the first two archival libraries.  Customize variable 
CPVM in file $HOME/itough2/Makefile accordingly.  If successfully built, the 
resulting iTOUGH2 executable can be used for both standard iTOUGH2 applications or 
applications that make use of PVM.   



 

_________________________________________________________________________ 
iTOUGH2-PVM 9 USING ITOUGH2-PVM 
 

4. USING iTOUGH2-PVM 
 
4.1 iTOUGH2-PVM Command >>> PVM 
 
 The hosts used for a given iTOUGH2-PVM application are defined in the iTOUGH2 
input file using third-level command >>> PVM, which is a subcommand of commands 
>> OPTIONS and > COMPUTATION.  The command syntax is as follows: 
 
Command 
>>> PVM: nhosts (JACOBIAN/SLEEP: isleep) 
HOST1PVM hostname_1 
HOST2PVM hostname_2 
... ... 
HOSTnhostsPVM hostname_nhosts 
 
Parent Command 
>> OPTION  
 
Subcommand 
-  
 
Description 
The number of hosts nhosts is provided on the command line, followed by nhosts 
lines containing the keyword *HOSTiPVM (i=1,...,nhosts) and the name of the host.  
The wild card * must be a unique identifier if more than one iTOUGH2-PVM applications 
are run simultaneously.  The name of the host must be identical to that appended to the file 
name of the iTOUGH2 executable on that specific machine.  A host (especially a multi-
processor machine) may be named several times in the list of hosts.  The parent process 
must not be included in the list.  However, a child process may be spawned on the parent 
host.  If the Levenberg-Marquardt algorithm is used, parallelization can be restricted to the 
evaluation of the Jacobian matrix (see Section 2.2) by using keyword JACOBIAN on the 
command line.  The parent process can be suspended for isleep seconds each time it 
checks for incoming residuals (default: isleep = 1). 
 
Example 
> COMPUTATION 
  >> OPTION 
     >>> use LEVENBERG-MARQUARDT minimization algorithm 
     >>> PVM: 5 processors (parallelize JACOBIAN only, SLEEP for : 1 sec) 
         HOST1PVM  presto.lbl.gov 
         HOST2PVM  hydra.lbl.gov 
         HOST3PVM  hydra.lbl.gov 
         HOST4PVM  aqua.eth.edu 
         HOST5PVM  telos 
     <<< 
  << 



 

_________________________________________________________________________ 
iTOUGH2-PVM 10 USING ITOUGH2-PVM 
 

4.2 Running iTOUGH2-PVM 
 
 An iTOUGH2-PVM application is started by using argument -pvm of the Unix shell 
script itough2 (see Appendix A), for example: 
 
itough2 -pvm sampvmi sampvm 3 & 
 
 The process may or may not be executed in the background.  Background execution is 
recommended, so that commands prista and kit can be submitted from the same 
window. 
 
 If necessary, an iTOUGH2-PVM process should always be killed using command kit, 
i.e., not by typing ctrl-C, which would only kill the itough2 script, leaving the 
iTOUGH2-PVM applications running on all hosts. 
 
 Argument -no_delete can be used to prevent the deletion of the temporary 
directories on all hosts after completion of a run; argument -pvm must precede argument 
-no_delete. 
 
 On all hosts, the iTOUGH2-PVM executable must have been built in directory 
$HOME/itough2, i.e., option -v cannot be used in combination with -pvm.   
 
The itough2 argument -pvm triggers to following actions: 
• A standard iTOUGH2 application is set up by creating a temporary directory 

$HOME/it2_<pid> on the parent host.  All input files are copied to the temporary 
directory. 

• The iTOUGH2 input file is parsed by the itough2 script, extracting the number of 
hosts, the keywords *HOSTiPVM (see Section 4.1), and the corresponding hostnames. 

• A temporary directory named it2_*HOSTiPVM is created on each host. 
• The home directory name of the specific host is appended to file itough2.fil. 
• All files in the parent host’s temporary directory are copied to the temporary directory 

on the child host, including adjusted file itough2.fil. 
• The filename itough2_*HOSTiPVM is linked to the iTOUGH2 executable on each 

host. 
• The parent process is started.  It reads the iTOUGH2 input file and spawns the child 

processes.  The parent process controls the application.  Program flow is different for 
the parent process and the child processes (see Appendix B).  All child processes are 
stopped by the parent process after completion of the run. 

• Output files from the parent process are copied back from the temporary directory to the 
working directory. 

• The temporary directories on all hosts are deleted unless an error occurred or option -
no_delete is used. 



 

_________________________________________________________________________ 
iTOUGH2-PVM 11 EXAMPLES 
 

5. EXAMPLES 
 
5.1 Overview 
 
 The examples discussed in the following sections are taken from the collection of 
iTOUGH2 sample problems described in Finsterle [1999c].  They have been slightly 
modified to allow parallel processing using iTOUGH2-PVM.  Focusing on aspects related to 
the performance of iTOUGH2-PVM, we will not give any interpretation of forward or 
inverse modeling results. 
 
 Example 1 (Section 5.2) is an introductory problem that demonstrates the use of 
iTOUGH2-PVM for parameter estimation based on the Levenberg-Marquardt algorithm.  
Two inversions are performed, the first with only the evaluation of the Jacobian being 
parallelized, and the second with full parallelization.  Example 2 (Section 5.3) shows the 
differences in performance for the grid search method depending on whether the output list 
is sorted or unsorted.   Finally, Example 3 (Section 5.4) discusses parallelization of Monte 
Carlo simulations on a multiprocessor machine. 
 
 Table 5.1.1 contains a list of the Unix workstations used for running the sample 
problems.  Their relative speed as indicated in the last column was measured by running a 
typical iTOUGH2 application on a single processor, and normalizing the speed to the 
slowest machine in the cluster.  Recall that it is not the CPU time but the turnaround time of 
a TOUGH2 forward run that determines the effectiveness of a specific workstation in the 
cluster. 
 
 
 
Table 5.1.1.  Computer Architectures in the Workstation Cluster 
Host Architecture 

Operating System 
PVM_ARCH Relative 

Speed 
scully.lbl.gov DEC Alpha, DEC OSF-1 ALPHA 16.3 
yuc.lbl.gov Silicon Graphics, IRIX SGI 15.6 
hermes.lbl.gov DEC Alpha, DEC OSF-1 ALPHA 11.0 
hydra.lbl.gov Sun SPARC multiprocessor, Solaris SUNMP 10.3 
presto.lbl.gov Sun 4, SPARCstation, Solaris SUN4SOL2 6.9 
kungfu.lbl.gov DEC Alpha, DEC OSF-1 ALPHA 3.9 
itelos.lbl.gov IBM/RS6000, AIX 3.2 RS6K 3.8 
killeen.nersc.gov CRAY multiprocessor, UNICOS CRAY 2.3 
ifs.lbl.gov Sun  4, SPARCstation, SunOS SUN4 1.0 
 
 
 



 

_________________________________________________________________________ 
iTOUGH2-PVM 12 EXAMPLES 
 

5.2 Example 1: Parameter Estimation 
 
 The first example consists of running in parallel Problem 2, Part 3 described in 
Finsterle [1999c].  Eight parameters are estimated using the Levenberg-Marquardt 
algorithm; only the evaluation of the Jacobian matrix will be parallelized.  The parent 
process is run on an IBM/RS6000 (itelos.lbl.gov), and four hosts are added, two DEC 
Alphas (hermes.lbl.gov and scully.lbl.gov), a Sun 4 SPARCstation (presto.lbl.gov), and a 
Sun SPARC multiprocessor (hydra.lbl.gov).  Block >>> PVM of the iTOUGH2 input file is 
shown in Figure 5.2.1.  Figure 5.2.2 shows a screen dump from itelos.lbl.gov with the 
command line and messages printed during the execution of iTOUGH2-PVM. 
 
 
> COMPUTATION 
  >> OPTION 
     >>> PVM : 4 hosts (parallelize JACOBIAN only, don’t SLEEP: 0) 
         HOST1PVM  hermes.lbl.gov 
         HOST2PVM  scully.lbl.gov 
         HOST3PVM  hydra.lbl.gov 
         HOST4PVM  presto.lbl.gov 
     <<< 
  << 
< 
 

Figure 5.2.1.  Excerpt from modified iTOUGH2 input file sam2p3i. 
 
 
 
itough2 -pvm sam2p3i sam2 3 & 
  
++++++++++++++++++ 
+ iTOUGH2 started: -pvm sam2p3i sam2 3 
++++++++++++++++++ 
  
PVM: Number of hosts:  4  hosts (parallelize JACOBIAN only) 
PVM: Creating temporary directory it2_HOST1PVM on host hermes.lbl.gov. 
PVM: Creating temporary directory it2_HOST2PVM on host scully.lbl.gov. 
PVM: Creating temporary directory it2_HOST3PVM on host hydra.lbl.gov. 
PVM: Creating temporary directory it2_HOST4PVM on host presto.lbl.gov. 
  
PVM: Running iTOUGH2 in parallel. 
 
PVM: Removing temporary directory it2_HOST1PVM on host hermes.lbl.gov 
PVM: Removing temporary directory it2_HOST2PVM on host scully.lbl.gov 
PVM: Removing temporary directory it2_HOST3PVM on host hydra.lbl.gov 
PVM: Removing temporary directory it2_HOST4PVM on host presto.lbl.gov 
 
+++++++++++++++++++++ 
+ iTOUGH2 terminated: -pvm sam2p3i sam2 3 
+++++++++++++++++++++ 
 
Figure 5.2.2.  Screen dump of messages from iTOUGH2-PVM. 



 

_________________________________________________________________________ 
iTOUGH2-PVM 13 EXAMPLES 
 

 Figure 5.2.3 shows excerpts from the iTOUGH2 output file sam2p3i.out.  All pro-
cesses on the four hosts were successfully spawned by the parent process, and a task identi-
fier (TID) was assigned.  File it2_HOSTi/itough2_HOSTiPVM was successfully 
linked to the executable in directory $HOME/itough2 of the respective host.  A 
warning message indicates that the forward instead of the centered finite-difference 
quotient will be used for calculating the Jacobian. 
 
 Convergence is reached after 8 iterations, after a total of 73 TOUGH2 runs have been 
performed.  The work load was almost equally distributed among the four host processors 
(see Figure 5.2.4), each performing two forward runs per Jacobian evaluation.  The parent 
processor was solving the forward problem 9 times, namely the initial run plus 8 runs to 
test the proposed Levenberg-Marquardt step.  The parent CPU time for this run was 58 sec 
as compared to 336 sec if the inversion were performed on itelos.lbl.gov without paral-
lelization.  Note that the parent processor is the slowest of all machines in the cluster.  
Solving the inverse problem on scully.lbl.gov without parallelization requires 86 CPU sec. 
 
 
 
 --- PVM --------------------------------------------------------------- 
 Task     TID Host                      Executable 
 ----------------------------------------------------------------------- 
    1  524290 hermes.lbl.gov            it2_HOST1/itough2_HOST1PVM 
    2  786434 scully.lbl.gov            it2_HOST2/itough2_HOST2PVM 
    3 1048578 hydra.lbl.gov             it2_HOST3/itough2_HOST3PVM 
    4 1310722 presto.lbl.gov            it2_HOST4/itough2_HOST4PVM 
 ----------------------------------------------------------------------- 
 Parent TID                    :  262147 
 Number of processes spawned   :       4 
 Parent process suspended for  :       0 sec. 
 ----------------------------------------------------------------------- 
 
 *****  WARNING  ***** 
 * Centered Finite Differences not supported by PVM! 
 *****  WARNING  ***** 
 

Figure 5.2.3.  Excerpt from iTOUGH2 output file sam2p3i.out; spawning of child 
processes. 
 
 
 --- PVM --------------------------------------------------------------- 
 # Runs   TID Host                      Executable 
 ----------------------------------------------------------------------- 
   16  524290 hermes.lbl.gov            it2_HOST1/itough2_HOST1PVM 
   16  786434 scully.lbl.gov            it2_HOST2/itough2_HOST2PVM 
   17 1048578 hydra.lbl.gov             it2_HOST3/itough2_HOST3PVM 
   15 1310722 presto.lbl.gov            it2_HOST4/itough2_HOST4PVM 
    9  262147 Master                    Suspended for     0 sec. 
 ----------------------------------------------------------------------- 
 

Figure 5.2.4.  Excerpt from iTOUGH2 output file sam2p3i.out; summary. 



 

_________________________________________________________________________ 
iTOUGH2-PVM 14 EXAMPLES 
 

 The problem was slightly modified by reducing the number of hosts to two, and 
allowing iTOUGH2-PVM to parallelize both the evaluation of the Jacobian and the testing of 
parameter updates with different Levenberg parameters.  The pertinent block in the 
iTOUGH2 input file is shown in Figure 5.2.5. 
 
 
 
> COMPUTATION 
  >> OPTION 
     >>> PVM using : 2 hosts 
         HOST1PVM  hermes.lbl.gov 
         HOST2PVM  scully.lbl.gov 
     <<< 
  << 
< 
 

Figure 5.2.5.  Excerpt from modified iTOUGH2 input file sam2p3i; two hosts. 
 
 
 Figure 5.2.6. shows an excerpt from the iTOUGH2 output file sam2p3i.out with 
information about the first iteration.  The gradient is calculated from the Jacobian matrix, 
which is evaluated in parallel on the two child processors.  Next, two parameter steps are 
calculated (Equation 2.2.2) with two values of the Levenberg parameter ( 1λ =0.01 and 

2λ =0.001).  Each step is of different length and orientation, and is checked against 
constraints such as maximum step size.  The two test parameter sets are then evaluated in 
parallel on the child processors, and the one leading to the smaller value of the objective 
function (here 1λ ) is accepted as the new parameter set. 
 
 
 
 -------------------------------------------------------------------------------------------------------- 
 ITER TOUGH2 OBJ FUNC. MAX. RESID. EQU.  ABS. K GEYS1+8   KLINK GEYS1+8 POROSITY GEYS1+   INIT. 1 TOPB1 
                                         INIT. 1 TOPB2    INIT. 1 TOPB3 Leakage Inlet 2 Leakage Inlet 3 
 -------------------------------------------------------------------------------------------------------- 
>I  0    1  .13217E+07  .26491E+05  122    -.190000E+02     .700000E+01     .150000E-01     .500000E+06 
                                            .170000E+07     .300000E+07    -.120000E+02    -.120000E+02 
 J  1 Gradient     =    .10910E+08 (forward) 
 -------------------------------------------------------------------- 
 MS   Parameter No. 3: POROSITY GEYS1+  Step  =   -.391743E-01 exceeds max. step size =    -.200000E-01 
 MS   Parameter No. 7: Leakage Inlet 2  Step  =    .772640E+01 exceeds max. step size =     .250000E+00 
 MS   Parameter No. 8: Leakage Inlet 3  Step  =    .758835E+01 exceeds max. step size =     .250000E+00 
 S    Step size    =    .25285E+06     Scaled step size =   .138004E+01  Levenberg parameter =  .10E-01 
 BL   Lower bound hit by parameter No. 3: POROSITY GEYS1+  Lower bound  =   .500000E-02 
 MS   Parameter No. 3: POROSITY GEYS1+  Step  =   -.652284E-01 exceeds max. step size =    -.200000E-01 
 MS   Parameter No. 7: Leakage Inlet 2  Step  =    .831053E+01 exceeds max. step size =     .250000E+00 
 MS   Parameter No. 8: Leakage Inlet 3  Step  =    .794512E+01 exceeds max. step size =     .250000E+00 
 S    Step size    =    .33789E+06     Scaled step size =   .141143E+01  Levenberg parameter =  .10E-02 
 BL   Lower bound hit by parameter No. 3: POROSITY GEYS1+  Lower bound  =   .500000E-02 
 PVM Testing with Levenberg Parameter =  .10E-02 on Processor No.  2,  Objective Function =  .13263E+07 
 PVM Testing with Levenberg Parameter =  .10E-01 on Processor No.  1,  Objective Function =  .73459E+06 
 Minimum objective function obtained with Levenberg parameter:  .10E-01 
 PU   Parameter update:                    -.861718E+00     .113737E+00    -.100000E-01    -.172266E+06 
                                           -.663148E+05    -.172805E+06     .250000E+00     .250000E+00 
>I  1   13  .73828E+06  .14051E+05  139    -.198574E+02     .711374E+01     .500000E-02     .327734E+06 
                                            .163369E+07     .282719E+07    -.117500E+02    -.117500E+02 
 

Figure 5.2.6.  Excerpt from iTOUGH2 output file sam2p3i.out, showing information 
about first Levenberg-Marquardt step. 



 

_________________________________________________________________________ 
iTOUGH2-PVM 15 EXAMPLES 
 

 Message file sam2p3i.msg contains some information about the exchange of data 
between the parent and child processes.  An excerpt is shown in Figure 5.2.7.  The parent 
process (TID = 262168) sends the first and second parameter sets along with some iteration 
parameters to the two child processes.  Note that the base-case parameter set was 
previously evaluated by the parent process, so that the first child process (TID = 524302) 
receives the parameter set with the first parameter being perturbed, whereas the second 
child process (TID = 786446) performs a TOUGH2 simulation with the second parameter 
being perturbed.  In this case, the first child process finished its task first, returning the 
residual vector to the parent process, which immediately sends out a new parameter set 
(with the third parameter being perturbed) to the first child process.  Similar statements are 
printed on the hosts to report the receiving of parameter sets and sending of residual 
vectors.  These message files could have been retrieved from the hosts’ temporary 
directories if option -no_delete were used. 
 
 
 
 --- PVM ---   
 TID = 262168 sent message No.  1 to TID = 524302 on Fri Sep 11 15:15 
 Data sent:     NTOUGHC=   1 
                NITER  =   0 
                IJAC   =   1 
                M      = 198 
                N      =   8 
                X(1..N)=    -.18996E+02     .70000E+01     .15000E-01     .50000E+06 
                             .17000E+07     .30000E+07    -.12000E+02    -.12000E+02 
 
 --- PVM ---   
 TID = 262168 sent message No.  2 to TID = 786446 on Fri Sep 11 15:15 
 Data sent:     NTOUGHC=   2 
                NITER  =   0 
                IJAC   =   1 
                M      = 198 
                N      =   8 
                X(1..N)=    -.19000E+02     .70043E+01     .15000E-01     .50000E+06 
                             .17000E+07     .30000E+07    -.12000E+02    -.12000E+02 
 
 --- PVM ---   
 TID = 262168 received message No.   1 on Fri Sep 11 15:15 
 Data received: M      = 198 
                R(1..4)=    -.74197E+05    -.22276E+04     .16135E+05    -.77206E+04 
                F(1..4)=    -.74197E+02    -.22276E+01     .16135E+02    -.77206E+01 
 
 --- PVM ---   
 TID = 262168 sent message No.  3 to TID = 524302 on Fri Sep 11 15:15 
 Data sent:     NTOUGHC=   3 
                NITER  =   0 
                IJAC   =   1 
                M      = 198 
                N      =   8 
                X(1..N)=    -.19000E+02     .70000E+01     .15150E-01     .50000E+06 
                             .17000E+07     .30000E+07    -.12000E+02    -.12000E+02 
 

Figure 5.2.7.  Excerpt from iTOUGH2 message file sam2p3i.msg, showing information 
about data exchange between processes. 



 

_________________________________________________________________________ 
iTOUGH2-PVM 16 EXAMPLES 
 

 The results of this inversion are slightly different from those obtained in the previous 
run because a different solution path was taken as a result of parallelization.  Convergence 
was actually achieved after 7 iterations, and 10 unsuccessful steps (with 20 different values 
for λ ) were taken before the inversion was terminated.  These additional unsuccessful 
steps in fact increased the total number of TOUGH2 simulations from 73 to 96.  
Nevertheless, the inversion was completed in 44 CPU seconds, shorter than the previous 
run, simply because all forward runs  (except one) were performed on the significantly 
faster child processors. 
 
 Example 1 demonstrates that the performance of iTOUGH2-PVM depends on many 
factors such as the relative speed of the computers in the cluster, the choice of the parent 
processor and its load, and the parallelization option selected, which may affect the solution 
path taken by the Levenberg-Marquardt algorithm. 
 
5.3 Example 2: Grid Search 
 
 Evaluating the objective function on a regular grid in the parameter space provides 
complete information about the topology of the solution.  However, the procedure is 
computationally expensive and becomes prohibitive if the number of parameters is large.  
In practice, grid search is limited to the analysis of three or fewer parameters.   
 
 The individual grid points of the uniformly discretized parameter space can be 
evaluated in parallel (Section 2.5).  However, if the processors in the cluster vary 
considerably in speed, the performance of parallel processing may deteriorate as will be 
demonstrated in the first part of this section.  Two solutions to the performance problem 
will also be discussed. 
 
 We perform a three-dimensional grid search for Problem 2, Part 2 described in Finsterle 
[1999c].  A range was specified for each of the three parameters defined in block 
> PARAMETER, bounding the parameter space.  Each axis in the parameter space is 
subdivided into 4 intervals, requiring a total of 125555 =××  TOUGH2 simulations.  The 
virtual machine consists of the parent processor and three child processors, as shown in 
Figure 5.3.1.  Note that ifs.lbl.gov is about 16 times slower than scully.lbl.gov (see Table 
5.1.1)  
 
> COMPUTATION 
 
  >> OPTIONS 
     >>> GRID SEARCH: 4 4 4 intervals, output SORTED 
     >>> PVM: 3 
         HOST1PVM scully.lbl.gov 
         HOST2PVM hermes.lbl.gov 
         HOST3PVM ifs.lbl.gov 
     <<< 
  << 

Figure 5.3.1.  Excerpt from modified iTOUGH2 input file sam2p2i. 



 

_________________________________________________________________________ 
iTOUGH2-PVM 17 EXAMPLES 
 

 By default, the output will be sorted (see Figure 5.3.2), requiring that the simulation 
results are accepted by the parent process in exactly the same order as the corresponding 
parameter sets have been submitted to the child processors.  This means that the two faster 
machines are idle most of the time, waiting for ifs.lbl.gov to complete its run.  As shown in 
Figure 5.3.2, each child processor has received the same number of tasks, independent of 
their relative speed.  While the grid search problem was solved in about one third of the 
time the slowest processor would have needed, it is obvious that running the task on the 
fastest machine without parallelization would have given a much better performance. 
 
 One solution to this problem is to force iTOUGH2-PVM to submit more parameter sets 
to the faster processors according to their relative speeds, keeping them equally busy.  
Figure 5.3.3 shows the corresponding >>> PVM block.  In order not to overload the 
faster machines, only 8 processes are started on scully.lbl.gov, 5 on hermes.lbl.gov, and one 
on ifs.lbl.gov.  The result is shown in Figure 5.3.4.  As expected, each spawned process 
carried out the same number of forward runs.  However, the total number of TOUGH2 
solutions calculated by the fast machine scully.lbl.gov is 72 as compared to 42 in the 
previous case (see Figure 5.3.2), whereas only 8 runs were performed on the slow 
ifs.lbl.gov as opposed to 41 before.  While improving the performance by about a factor of 
five, running the problem on scully.lbl.gov alone would still be slightly faster!  
Parallelization is only advantageous in this case if the number of processes initiated on the 
three machines were in the ratio of 16:10:1.  Note that this example was specially designed 
to demonstrate a rather extreme case.  However, it may reflect the situation encountered on 
a highly heterogeneous network.  It is also important to realize that this poor performance is 
a result of the sorted grid search algorithm chosen in this example.  The other methods 
discussed in Section 2 exhibit fewer restrictions, i.e., the slowest machine may not be the 
factor limiting the performance. 
 
 This last point is illustrated in the final part of this example, where the output of the 
grid search is allowed to be unsorted.  Adding keyword UNSORTED to the line with the 
command >>> GRID SEARCH (see Figure 5.3.5) allows the slowest machine to make 
its (minor) contribution to the overall task.  More importantly, it does not inhibit the perfor-
mance of the other two hosts.  The grid search output shown in Figure 5.3.6 is unsorted.  
The first parameter set was submitted for evaluation by scully.lbl.gov.  However, the result 
obtained with the second parameter set calculated by hermes.lbl.gov was returned sooner, 
and the first objective function calculated by ifs.lbl.gov is reported on the tenth line.  It 
becomes obvious that the work load of scully.lbl.gov was relatively high at the time of this 
simulation; it completed fewer runs than hermes.lbl.gov, and only about 10 times as many 
as the slow ifs.lbl.gov.  This reminds us that it is not the speed of the CPU as tabulated in 
Table 5.1.1 that determines the overall performance, but the work load of each processor 
spawned by iTOUGH2-PVM.   
 
 The transfer rate of data on the network may also affect the performance especially in 
these examples, where each TOUGH2 simulation requires only a few CPU seconds.  Since 
only few data are exchanged between the parent process and its children, the impact of the 
network on the overall performance decreases as the size of the application increases.  



 

_________________________________________________________________________ 
iTOUGH2-PVM 18 EXAMPLES 
 

 
 EVALUATE OBJECTIVE FUNCTION 
 --------------------------- 
 
 PARAMETER                     RANGE              SUBDIVISIONS 
 ABS. K GEYS1+8    -0.20000E+02 <-> -0.19000E+02             4 
 KLINK GEYS1+8      0.60000E+01 <->  0.70000E+01             4 
 POROSITY GEYS1+    0.50000E-02 <->  0.10000E+00             4 
 
 TOTAL NUMBER OF FUNCTION EVALUATIONS:  125 
 
   ABS. K GEYS1+8   KLINK GEYS1+8 POROSITY GEYS1+  OBJECTIVE FUNC  
   -0.2000000E+02   0.6000000E+01   0.5000000E-02   0.2442981E+06  
   -0.1975000E+02   0.6000000E+01   0.5000000E-02   0.3665462E+06  
   -0.1950000E+02   0.6000000E+01   0.5000000E-02   0.5213457E+06  
   -0.1925000E+02   0.6000000E+01   0.5000000E-02   0.7119997E+06  
   -0.1900000E+02   0.6000000E+01   0.5000000E-02   0.9369772E+06  
   -0.2000000E+02   0.6250000E+01   0.5000000E-02   0.2253501E+06  
   -0.1975000E+02   0.6250000E+01   0.5000000E-02   0.3542300E+06  
   -0.1950000E+02   0.6250000E+01   0.5000000E-02   0.5261435E+06  
   -0.1925000E+02   0.6250000E+01   0.5000000E-02   0.7389479E+06  
   -0.1900000E+02   0.6250000E+01   0.5000000E-02   0.9833694E+06  
   -0.2000000E+02   0.6500000E+01   0.5000000E-02   0.2105522E+06  
   -0.1975000E+02   0.6500000E+01   0.5000000E-02   0.3564799E+06  
   -0.1950000E+02   0.6500000E+01   0.5000000E-02   0.5519890E+06  
   -0.1925000E+02   0.6500000E+01   0.5000000E-02   0.7863536E+06  
   -0.1900000E+02   0.6500000E+01   0.5000000E-02   0.1046639E+07  
   -0.2000000E+02   0.6750000E+01   0.5000000E-02   0.2110985E+06  
   -0.1975000E+02   0.6750000E+01   0.5000000E-02   0.3814090E+06  
   -0.1950000E+02   0.6750000E+01   0.5000000E-02   0.5997934E+06  
   -0.1925000E+02   0.6750000E+01   0.5000000E-02   0.8511938E+06  
   -0.1900000E+02   0.6750000E+01   0.5000000E-02   0.1122943E+07  
   -0.2000000E+02   0.7000000E+01   0.5000000E-02   0.2352778E+06  
   -0.1975000E+02   0.7000000E+01   0.5000000E-02   0.4292179E+06  
   -0.1950000E+02   0.7000000E+01   0.5000000E-02   0.6653426E+06  
   -0.1925000E+02   0.7000000E+01   0.5000000E-02   0.9287278E+06  
   -0.1900000E+02   0.7000000E+01   0.5000000E-02   0.1208063E+07  
   -0.2000000E+02   0.6000000E+01   0.2875000E-01   0.2430781E+06 
   -0.1975000E+02   0.6000000E+01   0.2875000E-01   0.3744522E+06   
    ...             ...             ...             ... 
   -0.1925000E+02   0.6750000E+01   0.1000000E+00   0.1188086E+07 
   -0.1900000E+02   0.6750000E+01   0.1000000E+00   0.1487237E+07  
   -0.2000000E+02   0.7000000E+01   0.1000000E+00   0.4704075E+06  
   -0.1975000E+02   0.7000000E+01   0.1000000E+00   0.7061561E+06  
   -0.1950000E+02   0.7000000E+01   0.1000000E+00   0.9799752E+06  
   -0.1925000E+02   0.7000000E+01   0.1000000E+00   0.1276334E+07  
   -0.1900000E+02   0.7000000E+01   0.1000000E+00   0.1581797E+07  
 
 Terminated normally. 
 
 --- PVM --------------------------------------------------------------- 
 # Runs   TID Host                      Executable 
 ----------------------------------------------------------------------- 
   42  524297 scully.lbl.gov            it2_HOST1PVM/itough2_HOST1PVM 
   42 1048587 hermes.lbl.gov            it2_HOST2PVM/itough2_HOST2PVM 
   41  786443 ifs.lbl.gov               it2_HOST3PVM/itough2_HOST3PVM 
    0  262159 Master                    Suspended for     0 sec. 
 ----------------------------------------------------------------------- 
 
  

Figure 5.3.2.  Excerpt from iTOUGH2 output file sam2p2i.out, showing sorted grid 
search output and load balance. 



 

_________________________________________________________________________ 
iTOUGH2-PVM 19 EXAMPLES 
 

 
> COMPUTATION 
 
  >> OPTIONS 
     >>> GRID SEARCH: 4 4 4 intervals, output SORTED 
     >>> PVM: 14 
         HOST1PVM  scully.lbl.gov 
         HOST2PVM  scully.lbl.gov 
         HOST3PVM  scully.lbl.gov 
         HOST4PVM  scully.lbl.gov 
         HOST5PVM  scully.lbl.gov 
         HOST6PVM  scully.lbl.gov 
         HOST7PVM  scully.lbl.gov 
         HOST8PVM  scully.lbl.gov 
         HOST9PVM  hermes.lbl.gov 
         HOST10PVM hermes.lbl.gov 
         HOST11PVM hermes.lbl.gov 
         HOST12PVM hermes.lbl.gov 
         HOST13PVM hermes.lbl.gov 
         HOST14PVM ifs.lbl.gov 
     <<< 
  << 
 

Figure 5.3.3.  Excerpt from modified iTOUGH2 input file sam2p2i, showing multiple 
processes being spawned on the same host. 
 
 
 
 --- PVM --------------------------------------------------------------- 
 # Runs   TID Host                      Executable 
 ----------------------------------------------------------------------- 
    9  524298 scully.lbl.gov            it2_HOST1PVM/itough2_HOST1PVM 
    9  524299 scully.lbl.gov            it2_HOST2PVM/itough2_HOST2PVM 
    9  524300 scully.lbl.gov            it2_HOST3PVM/itough2_HOST3PVM 
    9  524301 scully.lbl.gov            it2_HOST4PVM/itough2_HOST4PVM 
    9  524302 scully.lbl.gov            it2_HOST5PVM/itough2_HOST5PVM 
    9  524303 scully.lbl.gov            it2_HOST6PVM/itough2_HOST6PVM 
    9  524304 scully.lbl.gov            it2_HOST7PVM/itough2_HOST7PVM 
    9  524305 scully.lbl.gov            it2_HOST8PVM/itough2_HOST8PVM 
    9 1048588 hermes.lbl.gov            it2_HOST9PVM/itough2_HOST9PVM 
    9 1048589 hermes.lbl.gov            it2_HOST10PVM/itough2_HOST10PVM 
    9 1048590 hermes.lbl.gov            it2_HOST11PVM/itough2_HOST11PVM 
    9 1048591 hermes.lbl.gov            it2_HOST12PVM/itough2_HOST12PVM 
    9 1048592 hermes.lbl.gov            it2_HOST13PVM/itough2_HOST13PVM 
    8  786444 ifs.lbl.gov               it2_HOST14PVM/itough2_HOST14PVM 
    0  262160 Master                    Suspended for      0 sec. 
 ----------------------------------------------------------------------- 
 

Figure 5.3.4.  Excerpt from iTOUGH2 output file sam2p2i.out, showing number of 
TOUGH2 runs performed by each process. 



 

_________________________________________________________________________ 
iTOUGH2-PVM 20 EXAMPLES 
 

 
> COMPUTATION 
 
  >> OPTIONS 
     >>> GRID SEARCH: 4 4 4 intervals, output UNSORTED 
     >>> PVM: 3 
         HOST1PVM scully.lbl.gov 
         HOST2PVM hermes.lbl.gov 
         HOST3PVM ifs.lbl.gov 
     <<< 
  << 
 

Figure 5.3.5.  Excerpt from modified iTOUGH2 input file sam2p2i; unsorted grid search.  
 
 
 EVALUATE OBJECTIVE FUNCTION 
 --------------------------- 
 
 PARAMETER                     RANGE              SUBDIVISIONS 
 ABS. K GEYS1+8    -0.20000E+02 <-> -0.19000E+02             4 
 KLINK GEYS1+8      0.60000E+01 <->  0.70000E+01             4 
 POROSITY GEYS1+    0.50000E-02 <->  0.10000E+00             4 
 
 TOTAL NUMBER OF FUNCTION EVALUATIONS:  125 
 
   ABS. K GEYS1+8   KLINK GEYS1+8 POROSITY GEYS1+  OBJECTIVE FUNC 
   -0.1975000E+02   0.6000000E+01   0.5000000E-02   0.3665462E+06 
   -0.2000000E+02   0.6000000E+01   0.5000000E-02   0.2442981E+06 
   -0.1925000E+02   0.6000000E+01   0.5000000E-02   0.7119997E+06 
   -0.1900000E+02   0.6000000E+01   0.5000000E-02   0.9369772E+06 
   -0.2000000E+02   0.6250000E+01   0.5000000E-02   0.2253501E+06 
   -0.1975000E+02   0.6250000E+01   0.5000000E-02   0.3542300E+06 
   -0.1925000E+02   0.6250000E+01   0.5000000E-02   0.7389479E+06 
   -0.1900000E+02   0.6250000E+01   0.5000000E-02   0.9833694E+06 
   -0.2000000E+02   0.6500000E+01   0.5000000E-02   0.2105522E+06 
   -0.1950000E+02   0.6250000E+01   0.5000000E-02   0.5261435E+06 
   -0.1975000E+02   0.6500000E+01   0.5000000E-02   0.3564799E+06 
   -0.1950000E+02   0.6500000E+01   0.5000000E-02   0.5519890E+06 
   -0.1925000E+02   0.6500000E+01   0.5000000E-02   0.7863536E+06 
   -0.1900000E+02   0.6500000E+01   0.5000000E-02   0.1046639E+07 
   -0.2000000E+02   0.6750000E+01   0.5000000E-02   0.2110985E+06 
   -0.1975000E+02   0.6750000E+01   0.5000000E-02   0.3814090E+06 
   -0.1950000E+02   0.6000000E+01   0.5000000E-02   0.5213457E+06 
   -0.1950000E+02   0.6750000E+01   0.5000000E-02   0.5997934E+06 
   -0.1925000E+02   0.6750000E+01   0.5000000E-02   0.8511938E+06 
    ...             ...             ...             ... 
 
 --- PVM ------------------------------------------------------------------------ 
 # Runs   TID Host                      Executable 
 -------------------------------------------------------------------------------- 
   57  524296 scully.lbl.gov            it2_HOST1PVM/itough2_HOST1PVM 
   62 1048586 hermes.lbl.gov            it2_HOST2PVM/itough2_HOST2PVM 
    6  786442 ifs.lbl.gov               it2_HOST3PVM/itough2_HOST3PVM 
    0  262158 Master                    Suspended for      0 sec. 
 -------------------------------------------------------------------------------- 
 

Figure 5.3.6.  Excerpt from iTOUGH2 output file sam2p2i.out, showing unsorted grid 
search output and load balance. 



 

_________________________________________________________________________ 
iTOUGH2-PVM 21 EXAMPLES 
 

5.4 Example 3: Monte Carlo Simulations 
 
 iTOUGH2-PVM can also be installed on a multiprocessor machine such as the Cray J90 
killeen.nersc.gov.  No effort has been made to optimize the performance of iTOUGH2 on 
this vector machine, or to take advantage of its built-in parallelization capabilities.  Problem 
1 Part 6 described in Finsterle [1999c] was selected to demonstrate the use of iTOUGH2-
PVM for Monte Carlo simulations on a single multiprocessor machine.  Figure 5.4.1 shows 
block > PVM from the modified iTOUGH2 input file sam1p6i.  Only 8 of 32 available 
processors were used because the priority is automatically reduced if too many processors 
are occupied by the same user.  The same host name is listed eight times.  Recall that eight 
different temporary subdirectories will be created on the host (see Section 4.2), avoiding 
potential file conflicts.  Note that additional processors on different machines could have 
been added. 
 
 
> COMPUTATION 
  >> OPTION 
     >>> Use: 8 PVM processors on Cray J90, parent SPEEP for : 1 second 
         HOST1PVM  killeen.nersc.gov 
         HOST2PVM  killeen.nersc.gov 
         HOST3PVM  killeen.nersc.gov 
         HOST4PVM  killeen.nersc.gov 
         HOST5PVM  killeen.nersc.gov 
         HOST6PVM  killeen.nersc.gov 
         HOST7PVM  killeen.nersc.gov 
         HOST8PVM  killeen.nersc.gov 
     <<< 
  << 
 

Figure 5.4.1.  Excerpt from modified iTOUGH2 input file sam1p6i. 
 
 
 The initial run with the mean parameter set is performed by the parent process, which is 
just another process running on killeen.nersc.gov.  After completion, the resulting mean 
system behavior, which is information needed by the child processes, is broadcast to all 
eight of them, and the first eight forward runs with random parameter sets are initiated.  As 
soon as a run is completed, the next random parameter set is calculated and submitted to the 
free processor, i.e., all eight child processes are constantly and simultaneously performing 
simulations.  As shown in Figure 5.4.2, the 100 requested Monte Carlo simulations are 
almost uniformly distributed over the eight child processes; the parent process performed 
only one (the first) forward run, sent and received data, and conducted the final statistical 
analysis.  The task was completed in 16% of the time needed if the analysis were performed 
using only one processor. 
 
 Note that Monte Carlo simulations and unsorted grid search do not require the good 
load balance seen in this example.  Good load balance is crucial for sorted grid search (see 
Section 5.3, Part 1), and is important for parallelization of the Levenberg-Marquardt 



 

_________________________________________________________________________ 
iTOUGH2-PVM 22 EXAMPLES 
 

algorithm, especially if the number of parallel processes approaches the number of 
parameters to be estimated. 
 
 
 
 --- PVM ------------------------------------------------------------------------ 
 # Runs   TID Host                      Executable 
 -------------------------------------------------------------------------------- 
   13  262147 killeen                   it2_HOST1PVM/itough2_HOST1PVM 
   13  262148 killeen                   it2_HOST2PVM/itough2_HOST2PVM 
   12  262149 killeen                   it2_HOST3PVM/itough2_HOST3PVM 
   13  262150 killeen                   it2_HOST4PVM/itough2_HOST4PVM 
   12  262151 killeen                   it2_HOST5PVM/itough2_HOST5PVM 
   13  262152 killeen                   it2_HOST6PVM/itough2_HOST6PVM 
   12  262153 killeen                   it2_HOST7PVM/itough2_HOST7PVM 
   11  262154 killeen                   it2_HOST8PVM/itough2_HOST8PVM 
    1  262146 Master                    Suspended for    145 sec. 
 -------------------------------------------------------------------------------- 
 

Figure 5.4.2.  Excerpt from iTOUGH2 output file sam1p6i.out, showing load balance. 
 
 
 In this and most other examples, the parent process performs only one forward run.  
After the initial run is completed, it spends most of its time in a loop, continuously 
checking whether a residual vector from one of the child processes has arrived.  When a 
residual vector is received, the parent process performs a few minor calculations, prepares 
the next parameter set, sends it out, and resumes its waiting position.  Since it is not waiting 
for a particular child process or a particular message ID, the parent process is constantly 
checking for messages, thus using CPU time.  With keyword SLEEP on the command 
line (see Section 4.1), the execution of the parent process can be suspended for a certain 
amount of time whenever it rechecks all the child processes for messages.  This saves CPU 
time on the parent process, which could be utilized, for example, by another child process 
spawned on the parent host itself.  A sleeping time of one second is reasonable.  For most 
large iTOUGH2-PVM applications, it is recommended that keyword SLEEP be used, 
providing the possibility of running a child process on the parent machine. 
 
 



 

_________________________________________________________________________ 
iTOUGH2-PVM 23 TROUBLESHOOTING 
 

6. TROUBLESHOOTING 
 
 Successful use of iTOUGH2-PVM requires experience with running standard iTOUGH2 
applications, good understanding of the concepts described in Section 2 of this report, and 
some knowledge of the Unix operating system.  It is also important to understand the 
itough2 shell script as outlined in Section 4.2 and Appendix A 
 
 This section attempts to summarize common problems encountered by users when 
installing and running iTOUGH2-PVM, and offers some guidelines to fix them.  It also 
explains some of the error messages potentially generated by the code. 
 
Installing PVM 
 Follow the instructions in Section 3.2, and consult Geist et al. [1994] for additional 
troubleshooting.  Make sure that the environment variables PVM_ROOT and PVM_ARCH 
are set correctly.  A FORTRAN77 and C compiler are required. 
 
Starting PVM 
 Start PVM by either entering the PVM console or starting the pvmd daemon using, 
respectively, the scripts pvm or pvmd; the scripts are located in directory 
$PVM_ROOT/lib, which must be added to the search path.  The pvmd writes error 
messages to a log file named /tmp/pvml.<uid>, where <uid> is a numeric user 
identifier.  PVM cannot be started if the socket address file /tmp/pvmd.<uid> exists 
from a previous run that was killed with an uncatchable signal.  This file must be removed 
before another pvmd will start. 
 
Installing iTOUGH2-PVM 
 To install iTOUGH2-PVM, type make pvm (see Section 3.3).  If include file 
fpvm3.h cannot be found during compilation, check variable CPVM in file  
$HOME/itough2/Makefile, or copy file fpvm3.h from directory 
$PVM_ROOT/include to directory $HOME/itough2.  If the PVM library routines 
are not found during linking, check variable LPVM in file 
$HOME/itough2/Makefile.  Make sure that the environment variables PVM_ROOT 
and PVM_ARCH are set correctly. 
 
Running iTOUGH2-PVM 
 iTOUGH2-PVM is started using the script itough2 with argument -pvm.  Messages 
similar to those shown in Figure 5.2.2 should be printed to the screen.   
 
 If error messages from commands rcp or rsh appear on the screen, check for 
correct hostnames and keywords HOSTiPVM in the iTOUGH2 input file, as well as for 
permissions on the corresponding host.  You must have the same login name and password 
on all hosts.  The host should be registered in files /etc/hosts and 
$HOME/.rhosts. 
 



 

_________________________________________________________________________ 
iTOUGH2-PVM 24 TROUBLESHOOTING 
 

 After completion of the iTOUGH2-PVM run, check for error messages in the iTOUGH2 
output file, the iTOUGH2 message file, or file /tmp/pvml.<uid>.  You may use com-
mand options -pvm -no_delete to prevent removal of the temporary directories on 
all the hosts.  Check for additional error messages in the corresponding files on each host. 
 
 The set of error messages shown in Figure 6.1 are related to improper installation of 
PVM or iTOUGH2-PVM on the parent host, as well as wrong command usage; the messages 
and remedies are self-explanatory. 
 
 The result of initiating child processes is reported in the iTOUGH2 output file (see 
Figure 5.3.2).  An example of unsuccessfully spawned tasks is shown in Figure 6.2. 
 
 
 
 *****  ERROR  ***** 
 * No PVM routines from file pvm.f found.  Recompile; type 'make pvm'. 
 *****  ERROR  ***** 
 
 *****  ERROR  ***** 
 * pvmd not responding! 
 * Start PVM before running iTOUGH2.  Type 'pvm' followed by 'quit'. 
 *****  ERROR  ***** 
 
 *****  ERROR ***** 
 * iTOUGH2 would run locally on a single processor. 
 * Use argument '-pvm' on itough2 command line. 
 * Check for correct installation of PVM and iTOUGH2-PVM on all hosts. 
 *****  ERROR  ***** 
 
 *****  ERROR ***** 
 * PVM: Task TID  1310724 stopped. 
 * All PVM tasks stopped! 
 *****  ERROR  ***** 
 

Figure 6.1.  Potential iTOUGH2-PVM error messages. 
 
 
 --- PVM --------------------------------------------------------------- 
 Task     TID Host                      Executable 
 ----------------------------------------------------------------------- 
 ERROR     -6 kungfu.lbl.gov            it2_HOST1PVM/itough2_HOST1PVM 
    1  524292 kungfu                    it2_HOST2PVM/itough2_HOST2PVM 
    2  786436 scully.lbl.gov            it2_HOST3PVM/itough2_HOST3PVM 
 ERROR     -6 hermes.lbl.gov            it2_HOST4PVM/itough2_HOST4PVM 
 ERROR     -7 itelos                    it2_HOST5PVM/itough2_HOST5PVM 
 ----------------------------------------------------------------------- 
 Parent TID                    :  262150 
 Number of processes spawned   :       2 
 ----------------------------------------------------------------------- 
 

Figure 6.2.  Unsuccessful spawning of iTOUGH2-PVM tasks. 



 

_________________________________________________________________________ 
iTOUGH2-PVM 25 TROUBLESHOOTING 
 

 There are various reasons for an erroneous initiation of child processes.  The parent 
pvmd may fail to add a host and start the child pvmd if: 
 
• PVM is not properly installed on that host (check installation of PVM); 
 

• The parent pvmd cannot resolve the host name to an IP address (check files 
/etc/hosts and $HOME/.rhosts); 

 

• A daemon pvmd is already running on the host (stop PVM on all hosts except the 
parent host by typing pvm followed by halt). 

 

• The pvmd executable and shell script pvmd is not installed in the correct location (set 
environment variable PVM_DPATH on the parent host to pvm3/lib/pvmd); 

 

• Something is printed in the .cshrc or equivalent script file (move printing statement 
to file .login; see also Section 9.2.5 of Geist et al. [1994]).  

 
 Other reasons for an error message as shown in Figure 6.2 are related to iTOUGH2. 
Make sure that the programs $HOME/itough2/itough2_<eos>.<hostname> 
exist and are executable on all hosts.  Here, <eos> is the number of the equation-of-state 
module used, and <hostname> is the name of the host as printed when typing 
hostname, which may or may not include the domainname.  For example, since the 
domainname is not included when typing hostname on host kungfu.lbl.gov, the executable 
was not found if kungfu.lbl.gov was given as the hostname; the task was successfully 
spawned when using hostname kungfu. 
 
 Note that if any of the child processes is stopped during an application for any reason,  
iTOUGH2-PVM terminates (see last error message in Figure 6.1). 



 

_________________________________________________________________________ 
iTOUGH2-PVM 26 REFERENCES 
 

ACKNOWLEDGMENT 
 
 This work was supported by the Assistant Secretary for Energy Efficiency and 
Renewable Energy, Office of Geothermal Technologies, of the U.S. Department of Energy, 
under Contract No. DE-AC03-76SF00098.  I would like to thank R. Hinkins for 
introducing me to parallel computing.  The review comments by C. Doughty, C. Oldenburg 
and A. Mishra are gratefully acknowledged.  Many thanks to D. Hawkes for his editorial 
comments. 
 
 
 
REFERENCES 
 
Finsterle, S., iTOUGH2 User’s Guide, Report LBNL-40400, Lawrence Berkeley National 

Laboratory, Berkeley, Calif., 1999a. 
 
Finsterle, S., iTOUGH2 Command Reference, Report LBNL-40401, Lawrence Berkeley 

National Laboratory, Berkeley, Calif., 1999b. 
 
Finsterle, S., iTOUGH2 Sample Problems, Report LBNL-40402, Lawrence Berkeley 

National Laboratory, Berkeley, Calif., 1999c. 
 
Geist, A., A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam, PVM: 

Parallel Virtual Machine—A User’s Guide and Tutorial for Networked Parallel 
Computing, MIT Press, Cambridge, 1994.  

 (This book can currently be viewed over the Internet at the following URL: 
http://www.netlib.org/pvm3/book/pvm-book.html 

 A PostScript file can be retrieved from the anonymous ftp server 
netlib2.cs.utk.edu, directory pvm3/book, file pvm-book.ps) 

 
Pruess, K., TOUGH User's Guide, Report NUREG/CR-4645, Nuclear Regulatory 

Commission (also Report LBL-20700, Lawrence Berkeley Laboratory, Berkeley, 
Calif.), 1987. 

 
Pruess, K., TOUGH2—A General-Purpose Numerical Simulator for Multiphase Fluid and 

Heat Flow, Report LBL-29400, Lawrence Berkeley Laboratory, Berkeley, Calif., 
1991. 

 



 

_________________________________________________________________________ 
iTOUGH2-PVM 27 APPENDIX A 
 

APPENDIX A: SHELL SCRIPT ITOUGH2 
 
 Figure A.1 shows an excerpt from the Unix shell script file itough2, which is used 
to start both standard iTOUGH2 applications as well as iTOUGH2-PVM.  Type itough2 
without any arguments to obtain the command usage. 
 
 The itough2 script and the iTOUGH2 FORTRAN77 code are interrelated.  
Corrupting either one may prevent iTOUGH2-PVM from running.  The steps performed by 
the itough2 script are described in general terms in Section 4.2; see also comments in 
Figure A.1. 
 
#! /bin/sh 
# 
######################################################################### 
# Shell script to run iTOUGH2 (Finsterle, June 1998)                    # 
#                                                                       # 
# Copy this file to your $HOME/bin directory.                           # 
# Set variable prog_dir (see line 22).                                  # 
# Make sure that directory $HOME/bin is in your search path.            # 
# Type "chmod a+x itough2" to make itough2 an executable command.       # 
#                                                                       # 
# Syntax:  itough2 [options] inv_file dir_file ieos                     # 
#                                                                       # 
#          inv_file  = iTOUGH2 input file                               # 
#          dir_file  = TOUGH2 input file                                # 
#          ieos      = Number of EOS module being used                  # 
#                                                                       # 
#          Options:  (see below)                                        # 
######################################################################### 
# 
# Provide here the path to the itough2 executable                             
# 
  prog_dir=$HOME/itough2 
# Provide here the path to the main temporary directory                       
# 
  tmp_dir=$HOME 
######################################################################### 
# 
# At least three arguments must be given 
# 
arguments=$* 
echo " " 
echo ++++++++++++++++++ 
echo + iTOUGH2 started: $arguments 
echo ++++++++++++++++++ 
if test $# -lt 3 
then  (prints command usage) 
     exit 1 
fi 
... 
 (initializes variables; checks command arguments; sets pvm=yes for option -pvm) 
... 

Figure A.1.  Excerpt from shell script file itough2. 



 

_________________________________________________________________________ 
iTOUGH2-PVM 28 APPENDIX A 
 

program=$progdir/itough2_$arg3.`hostname` 
if test ! -s "$program" 
then  (prints error message) 
  exit 1 
fi 
tmp_dir=$tmp_dir/it2\_$$ 
datum=`date` 
ori_dir=`pwd` 
# 
mkdir $tmp_dir  create temporary directory on parent host 
cd    $tmp_dir 
tmp_dir=`pwd`                              > $inv_fil.msg 2>&1 
inv_fil=`echo $arg1|awk -F. '{ print $1 }'`    
dir_fil=`echo $arg2|awk -F. '{ print $1 }'`    
if test $inv_out = $default 
then inv_out=$inv_fil.out 
fi 
if test $dir_out = $default 
then dir_out=$dir_fil.out 
fi 
if test $sav_out = $default 
then sav_out=$dir_fil.sav 
fi 
... 
 (creates file itough2.msg) 
... 
#  write input file names into file itough.fil 
# 
echo $arg1                                  > itough2.fil 
echo $arg2                                 >> itough2.fil 
echo $ori_dir                              >> itough2.fil 
echo $datum                                >> itough2.fil 
echo $arguments                            >> itough2.fil 
echo $0                                    >> itough2.fil 
echo $tmp_dir                              >> itough2.fil 
# 
#  copy iTOUGH2 and TOUGH2 input files to temporary directory 
# 
... 
cp  $ori_dir/$arg1 . 
cp  $ori_dir/$arg2 . 
... 
 (copies additional input files to temporary directory) 
... 
if test $run = yes 
then copy potential data files to temporary directory 
   cd $ori_dir 
   cp `grep -i FILE $inv_fil | awk -F: '{print $2}' \\ 
      | awk '{print $1}'` $tmp_dir >> $inv_fil.msg  2>&1 
   cd $tmp_dir 
fi 
... 
 

Figure A.1. (cont.)  Excerpt from shell script file itough2. 



 

_________________________________________________________________________ 
iTOUGH2-PVM 29 APPENDIX A 
 

# 
# PVM 
# 
if test $pvm = yes -a $run = yes 
then 
# 
# parse input file to find number of hosts 
# 
nprocs=`grep ">>>" $inv_fil | grep PVM | awk -F: '{print $2}'` 
ip=0 
echo " " 
echo "PVM: Number of hosts: $nprocs" 
cp $tmp_dir/itough2.fil $tmp_dir/itough2.dum 
while test "$ip" -lt "$nprocs" 
do parse input file to find hosts and directories 
  ip=`expr $ip + 1` 
  hostpvm="HOST"$ip"PVM" 
  remote_dir=it2_`grep $hostpvm $inv_fil | awk '{print $1}'` 
  host=`grep -i $hostpvm $inv_fil | awk '{print $2}'` 
  echo "PVM: Creating temporary directory $remote_dir on host $host." 
  if test $host = `hostname` parent host and child host are identical; use cp 
  then 
    mkdir $HOME/$remote_dir create temporary directory 
    echo  $HOME >> $tmp_dir/itough2.fil add home directory name 
    cp    $tmp_dir/itough2.fil $HOME 
    cp    $tmp_dir/* $HOME/$remote_dir copy all files to temporary directory 
    ln -f $program   $HOME/$remote_dir/itough2_$hostpvm create link 
    cp    $tmp_dir/itough2.dum $tmp_dir/itough2.fil 
  else parent host and child host are not identical, use rcp 
    rsh -n $host mkdir $remote_dir create temporary directory 
    remote_home=`rsh -n $host pwd` add home directory name to itough2.fil 
    echo   $remote_home >> $tmp_dir/itough2.fil          
    rcp    $tmp_dir/itough2.fil $host:) 
    rcp    $tmp_dir/* $host:$remote_dir copy all files to host 
    rsh -n $host ln -f itough2/itough2_$arg3.$host \\ 
           $remote_dir/itough2_$hostpvm create link to executable 
    cp     $tmp_dir/itough2.dum $tmp_dir/itough2.fil 
  fi 
done 
mv $tmp_dir/itough2.dum $tmp_dir/itough2.fil 
echo " " 
echo "PVM: Running iTOUGH2 in parallel." 
fi 
# 
if test $run = yes 
then $program  start iTOUGH2 on parent host 
# 
... 
 (copies output files from local directory on parent host to working directory) 
... 
 

Figure A.1. (cont.)  Excerpt from shell script file itough2. 



 

_________________________________________________________________________ 
iTOUGH2-PVM 30 APPENDIX A 
 

... 
 (removes temporary files) 
... 
if test $delete = yes  
then  
  nprocs=`grep ">>>" $inv_fil | grep PVM | awk -F: '{print $2}'` 
  ip=0 
  if test $pvm = yes 
  then 
  while test "$ip" -lt "$nprocs" 
  do 
     ip=`expr $ip + 1` 
     hostpvm="HOST"$ip"PVM" 
     remote_dir=it2_`grep $hostpvm $inv_fil | awk '{print $1}'` 
     host=`grep -i $hostpvm $inv_fil | awk '{print $2}'` 
     if test $host = `hostname` parent host and child host are identical; use rm 
     then 
       echo "PVM: Removing temporary directory $remote_dir on host $HOME" 
       /bin/rm -r $HOME/$remote_dir remove temporary directory 
       /bin/rm itough2.fil 
       /bin/rm itough2.ver 
     else parent host and child host are not identical; use rsh 
       echo "PVM: Removing temporary directory $remote_dir on host $host" 
       rsh -n $host rm -r $remote_dir remove temporary directory on host 
       rsh -n $host rm itough2.fil 
       rsh -n $host rm itough2.ver 
     fi 
  done 
  fi 
  cd .. 
  /bin/rm -r $tmp_dir 
else 
  echo "Temporary directory $tmp_dir not removed!" 
fi 
echo 
echo +++++++++++++++++++++ 
echo + iTOUGH2 terminated: $arguments 
echo +++++++++++++++++++++ 
# 
# end of itough2 script file 
 

Figure A.1. (cont.)  Excerpt from shell script file itough2. 



 

_________________________________________________________________________ 
iTOUGH2-PVM 31 APPENDIX B 
 

APPENDIX B: iTOUGH2-PVM ARCHITECTURE 
 
 
 Figure B.1 shows a simplified flow chart of iTOUGH2-PVM.  The source codes for the 
parent and child processes are identical.  All PVM-related subroutines can be found in file 
pvm.f. 
 
 iTOUGH2-PVM first enrolls itself into PVM, obtains its task identifier (TID), and 
determines whether it is a parent process (IPVMMS=1) or a child process spawned by a 
parent process (IPVMMS=2).  The program flow differs depending on whether the task is a 
parent or child process. 
 
 The parent process reads the standard TOUGH2 and iTOUGH2 input files from the 
temporary directory $HOME/it2_<pid>.  The information provided in block 
>>> PVM (see subroutine PVMINPUT) is used to add hosts to the virtual machine and to 
spawn child processes (see subroutine PVMINIT).  Furthermore, it sends the name of 
temporary directory it2_*HOSTiPVM to the corresponding child process.  As soon as 
the directory name is received by the child process, it starts reading the TOUGH2 and 
iTOUGH2 input files, which were copied to the host’s temporary directory by the shell 
script itough2 (see Section 4.2 and Appendix A).  After reading of input is completed, 
the child process goes to subroutine FCNLEV and waits for the arrival of data or 
parameter sets sent by the parent process  (see subroutine PVMRCVPAR).  In the meantime, 
the parent process performs the initial forward run with the base-case parameter set (except 
for grid search).  If sensitivity analyses, first-order-second-moment (FOSM) uncertainty 
propagation analyses, or Monte Carlo simulations are performed, the results from the initial 
run are broadcast to all hosts.  No such step is required when performing optimization using 
the Levenberg-Marquardt, Gauss-Newton, Downhill Simplex, or Grid Search method.  
After the initial run, the parameter set is updated according to the procedure of the selected 
method.  The updated parameter set is sent to one of the child processes (see subroutine 
PVMSENPAR).  The procedure is repeated until all child processes are busy.  The child 
processes perform one TOUGH2 forward calculation with the parameter set they have 
received from the parent process.  After completion of the run, they send the resulting 
residuals to the parent process (see subroutine PVMSENRES) and go back to the top of 
subroutine FCNLEV, waiting for the next parameter set to arrive.  The parent process 
checks for incoming residual vectors (see subroutine PVMRCVRES), and processes them 
according to the selected method.  If convergence is achieved or one of the child process 
signals that it was stopped (see subroutine PVMRCVRES), the parent process stops all child 
processes before it continues with the error analysis in subroutine TERMINAT. 
 
 If PVM is not engaged, variable IPVMMS is set to zero, and iTOUGH2 runs in its 
standard mode, skipping PVM-related steps.  Looking for variable IPVMMS in files 
it2main.f and it2xxxx.f leads to the code affected by PVM. 
 
   



 

_________________________________________________________________________ 
iTOUGH2-PVM 32 APPENDIX B 
 

iTOUGH2 Main Program

Determine TID

Parent

Read input files

Add hosts 
Spawn tasks 

Send temporary directory name

Perform initial run 
Send results from initial run

Update parameter set 
Send parameter set 
Receive residuals 

Calculate objective function

Stop child processes 
Terminate

Child

Receive temporary directory name

Read input files

Receive results from initial run

Receive parameter sets 
Perform forward run 

Send residuals

 
Figure B.1.  Simplified iTOUGH2-PVM flow chart. 
 
  


